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Idea

By working with relative monads, we may better understand classical
results about (non-relative) monads.
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The pullback theorem
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Algebras and free algebras

What is the relationship between algebras and free algebras?

There are two canonical categories associated to each monad T .

• The category Kl(T ) of free algebras.

• The category Alg(T ) of algebras.

Given Alg(T ), we may construct Kl(T ) by taking the full image
factorisation of the free functor fT : E → Alg(T ), into an identity-
on-objects functor followed by a fully faithful functor.
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Constructing algebras from free algebras

Conversely, if we are given the category of free algebras, may we
construct the category of algebras?

Theorem 1 ([Lin69])

Let T be a monad on a category E. Then the following diagram
exhibits a pullback in Cat.

Alg(T )

[Kl(T )op,Set]

E

[Eop,Set]

uT [kT
op,Set]

よE

⌟
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Nerve theorems for monads

Thus, we can both construct the category of free algebras from the
category of algebras; and construct the category of algebras from the
category of free algebras.

However, this is not the end of the story.

In fact, for many monads T , the pullback theorem can be refined
to obtain a sharper characterisation of the T -algebras in terms of a
pullback over a nerve functor, rather than the Yoneda embedding.

Definition 2

Let j : A → E be a functor. The nerve of j is the restricted
Yoneda embedding nj : E → Â defined by:

nj(e) := E(j−, e)

The nerve of the identity 1E is the Yoneda embeddingよE : E → Ê.
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Nerve theorems for monads II

A nerve theorem for a class of monads takes the following shape.

Theorem schema

Let T be a nice monad on a category E. Then there exists a full
subcategory j : A ↪→ E such that, denoting by k : A → KlA(T )
the full subcategory of Kl(T ) spanned by the objects of A, the
following diagram exhibits a pullback in Cat.

Alg(T ) K̂lA(T )

E Â

uT k̂

nj

⌟
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Example A: algebraic theories

Let T be a finitary monad on Set and take F ↪→ Set to be the full
subcategory of finite ordinals.

Then k : F → KlF(T ) is the finitary algebraic theory associated to T ,
and the category of T -algebras forms a pullback over nj ,

exhibiting
it as the category of models for the algebraic theory k [Lin69; Die74].

Cart(KlF(T )
op,Set)

Alg(T ) K̂lF(T )

Cart(Fop,Set)

Set F̂

≃

Cart(kop,Set) uT k̂

≃

⌟
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Example B:

(ω-)

categories

Let T be the free category monad on Grph and take ∆0 ↪→ Grph
to be the full subcategory of linear graphs.

Then Kl∆0(T ) is the simplex category ∆, and the category of small
categories forms a pullback over the nerve of the inclusion. This is
precisely the characterisation of small categories in terms of simplicial
sets satisfying the Segal conditions [Lei04; Web07].

Cat ∆̂

Grph ∆̂0

uT k̂
⌟

An similar characterisation holds for the free strict ω-category monad
on the category of globular sets [Ber02].
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Frameworks for nerve theorems

Nerve theorems have been established for several different classes of
monads.

• Familially representable monads [Lei04; Web07]

• Monads with arities [Web07; Mel10; BMW12]

• Φ-cocontinuous monads [NP09; LR11; Luc16]

• Nervous monads [BG19; LP23]

However, none of these general nerve theorems subsumes each of
the others. Furthermore, there are examples that are not captured
by any of these general nerve theorems (cf. [MU22]).

Consequently, the natural question to ask is: of what general phe-
nomenon are these theorems instances?
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Relative monads
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Relative monads

A relative monad is a generalisation of a monad, where the underlying
functor is permitted to be an arbitrary functor, rather than an
endofunctor.

Definition 3 ([ACU10])

A relative monad comprises

1. a functor j : A → E, the root;
2. a functor t : A → E, the carrier;
3. a natural transformation η : j ⇒ t, the unit;
4. a natural transformation † : E(j−, t−) ⇒ E(t−, t−), the

extension operator,

satisfying unitality and associativity axioms.

When j = 1, this is equivalent to the usual definition of a monad.
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The Kleisli category for relative monad

Just as for non-relative monads, there are two important categories
associated to every relative monad.

Definition 4 ([ACU10])

Let j : A → E be a functor and let T be a j-relative monad.
The Kleisli category for T is the category Kl(T ) defined by

|Kl(T )| := |A|
Kl(T )(x, y) := E(jx, ty)

with identities and composition given as in the Kleisli category
for a monad.

This is equipped with an inclusion functor kT : A → Kl(T ).
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The category of algebras for relative monad

Definition 5 ([ACU10])

Let j : A → E be a functor and let T be a j-relative monad. A
T -algebra comprises

1. an object e ∈ E, the carrier;
2. a natural transformation ⋊ : E(j−, e) ⇒ E(t−, e), the

extension operator,

satisfying compatibility axioms.

The category of T -algebras is the category Alg(T ) whose ob-
jects are T -algebras and whose morphisms are morphisms in E
preserving the algebra structure.

This is equipped with a forgetful functor uT : Alg(T ) → E.
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The pullback theorem for relative monads

We wish to generalise Linton’s pullback theorem, from monads to
relative monads.

Theorem 6

Let j : A → E be a dense functor and let T be a j-relative
monad. The following diagram exhibits a pullback in Cat.

Alg(T ) K̂l(T )

E Â

k̂T

nj

uT

⌟

Hence, the comparison functor iT : Kl(T ) ↪→ Alg(T ) is dense.

How does this relate to nerve theorems for monads?
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Relative monads from monads

Let T = (t, µ, η) be a monad on a category E and let j : A → E be
a functor. Precomposing j induces a j-relative monad structure on
(j ; t), which we denote by (j ; T ).

We can characterise the category of free (j ; T )-algebras in terms of
the category of free T -algebras: it is given by taking the full image
factorisation of A → Kl(T ).

Kl(j ; T ) Kl(T )

A E

kj;T

j

kT

In particular, when j : A → E is the inclusion of a full subcategory,
Kl(j ; T ) is precisely the category KlA(T ).
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j-ary monads

In general, we cannot characterise the (j ; T )-algebras in terms of
the T -algebras. However, we do always have a canonical comparison
functor, as follows.

Alg(T ) Alg(j ; T )

E
uT uj;T

Definition 7

Let j : A → E be a functor and let T be a monad on E. We say
that T is j-ary if the comparison functor above is an equivalence.

Theorem 8 ([AM23])

T is j-ary ⇐⇒ uj;T : Alg(j ; T ) → E admits a left adjoint.
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The nerve theorem for j-ary monads

Theorem 9

Let j : A → E be a dense functor and let T be a monad on E.
The following diagram exhibits a pullback in Cat if and only if
T is j-ary.

Alg(T ) ̂Kl(j ; T )

E Â

uT k̂j;T

nj

⌟

In particular, this captures the classes of familially representable mon-
ads [Lei04; Web07], monads with arities [Web07; Mel10; BMW12],
Φ-cocontinuous monads [NP09], and nervous monads [BG19; LP23].
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Towards a formal understanding
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Formal category theory

At what level of generality does the pullback theorem and the nerve
theorem hold?

So far, I have spoken only about ordinary categories.
But in fact, the theorem holds in much greater generality.

We carry out our development in the context of an exact virtual
equipment (cf. [Woo85; Sch15]).

By working at this level of generality, we immediately capture pullback
and nerve theorems for ordinary categories, enriched categories,
internal categories, and other kinds of structure, such as generalised
multicategories [CS10].

For instance, the nerve theorem holds for categories enriched in any
monoidal category V (with no additional assumptions).
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monoidal category V (with no additional assumptions).

55



The pullback theorem, formally

It is relatively straightforward to write out a direct proof of the
pullback theorem. It is, however, rather fiddly.

Furthermore, this
proof strategy becomes less tenable once we move beyond ordinary
categories to the formal setting.

This motivates the search for a more abstract approach to the
pullback theorem.
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The virtual equipment of categories

Categories, functors (→), distributors (−7−→), and natural transform-
ations (⇒) form a virtual double category Cat. In fact, Cat is a
particularly well behaved kind of virtual double category called a
virtual equipment.

Virtual equipments are a rich enough setting to carry out much of
category theory entirely formally.

To reformulate the pullback theorem in the setting of a virtual
equipment, we must introduce one more definition.
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Semanticisers

A semanticiser is a kind of double categorical limit that resembles
a pullback.

Given a diagram of the following shape in Cat,

a
semanticiser comprises a category n ×A k, a functor n ×A k → E
and a distributor n×A k → K satisfying π2(k, 1) = n(1, π1), such
that, for any cone, there is a unique functor · → n×A k rendering
the two triangles commutative.

·

n×A k

K

E A

p

π2p
π1

np

k

The concept of semanticiser makes sense in any (virtual) equipment.
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The semanticiser theorem

With the notion of semanticiser at hand, we may reformulate the
pullback theorem by eliminating the use of presheaf categories.

Theorem 10

Let j : A → E be a dense functor and let T be a j-relative
monad. The following diagram exhibits a semanticiser in Cat.

Alg(T ) Kl(T )

E A

p
uT

E(j,1)
p

kT

The reason for this stems from a deep relationship between relative
monads, loose-monads (a.k.a. promonads), and two-dimensional
exactness.
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Semanticisers from pullbacks

Semanticisers can be constructed from pullbacks and presheaf ob-
jects. This allows us to reformulate a universal property involving
distributors into one involving only functors, hence giving a more
concrete description.

Theorem 11

Let j : A → E be a functor with small domain. The semanticiser

of E(j, 1) : E −7−→ A and A
k−→ K is exhibited by the following

pullback.

nj ×Â
k̂ K̂

E Â

π1

π2

⌟
k̂

nj
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The nerve theorem for relative monads

Thus, the pullback theorem follows as a consequence of the more
general semanticiser theorem.

Corollary 12

Let j : A → E be a dense functor and let T be a j-relative
monad. The following diagram exhibits a pullback in Cat.

Alg(T ) K̂l(T )

E Â

k̂T

nj

uT

⌟
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Summary

• For a dense functor j, every j-relative monad T admits a
pullback theorem, exhibiting the category of T -algebras as a
pullback along the nerve of j.

• Prior nerve theorems for monads ([Lin69; Lei04; Web07; NP09;
Mel10; LR11; BMW12; BG19; LP23]) arise as instances of the
nerve theorem for j-ary monads.

• The pullback theorem follows as a consequence of the more
general semanticiser theorem, which holds in any exact virtual
equipment.

You can read our preprint here:

The pullback theorem for relative monads [AM24]

Do come and talk to me if you find any of this interesting!
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